
CASE MANAGER 5.2 - INSTANCE DIRECTORY
INTEGRATION GUIDE



Table of Contents

SECTION 1 OVERVIEW AND PURPOSE 5

SECTION 2 DEFINITIONS 5

Instance Directory 5

Version control 5

XQL 5

Extension 5

Policy 5

Command-line Argument 5

Solution 6

Licensing Validation 6

SECTION 3 COMPONENTS 6

DatabaseConnectionFactory 6

IApplicationInteractor 7

CuminApplication 8

Basic Operation 8

Database Connection Initialisation 8

Command-line Argument Processing 9

Case Manager Version Verification 9

Cancel 10

ICommandLineArgumentParserExtension 10

ArgumentParser 10

ProcessArgumentsAction 10

HelpString 11

CuminSession 11

Singleton instance 11

UserSecurityManager 12

WorkgroupManager 12

PluginManager 12

SolutionManager 12

LicensingManager 13

SystemInformation 13

SessionManagers 13

CuminSessionSetupDescription 14

ApplicationInteractor 14

SetupFailureMode 14

ShouldLoadDynamicExtensions 14
2



ShouldLoadWorkgroupManager 14

LicenseApplicationId 14

LicenseValidateMode 14

UserLoginMode 15

SpecificLoginUserId 15

SessionManagerTypes 15

ProgressObservers 16

BaseCuminPlugin 16

ICancellable 17

Case Manager Components 17

WorkItemMediator 17

VoyagerSettings 17

ThemeSkinManager 17

LicenseSessionManager 18

ElectronicDiary 18

FeedbackReportClient 18

SECTION 4 EXAMPLE PROGRAMS 19

Simple Instance Directory integrated application 19

Application-specific command-line arguments 19

Create a new Command-line argument parser extension: 20

Changes to the CuminApplication 22

Using parsed arguments in Main method 22

Application with Login 23

Restartable application 24

Forms 24

Application Interactor 24

CuminApplication 25

Changes to Main 26

License Validated Application 28

Application making use of extensions 28

Application making use of additional session managers 28

SECTION 5 LIBRARIES 29

VoyagerNetz.Instance 29

VoyagerNetz.InstanceDirectory 29

Application Interactors 29

VoyagerNetz.Instance.DevEx 29

VoyagerNetz.Instance.WinForms 29

VoyagerNetz.Instance.Console 29
3



VoyagerNetz.Instance.WinService 29

Microworks.Data 29

Micwoworks.Data.FirebirdClient 29

Microworks.Voyager.Cumin.Common 29

Microworks.Voyager.Cumin.Voyager 29

VoyagerNetz.BaseComponents 30

VoyagerNetz.Components.Work 30

VoyagerNetz.Licensing.Common 30

4



SECTION 1 OVERVIEW AND PURPOSE

This guide is aimed at developers integrating with the Case Manager technology, specifically the Instance
Directory. Most of the concepts surrounding the Instance Directory are covered in the Instance Directory Technical
Manual and will not be addressed in this document. A thorough programming understanding and a familiarity with
Case Manager concepts are assumed.

Case Manager provides a number of components that simplify integration with the technology. This document
discusses a number of these components and includes code examples.

SECTION 2 DEFINITIONS

Instance Directory
The Instance Directory is a network-wide maintained directory of the available named sets of database connection
details (instances) for Case Manager applications.

Version control
Version control is the process of ensuring that the database and application are on the appropriate Case Manager
version.

XQL
XQL is the VoyagerNetz-defined query language used to communicate with the database. The database connection
created by the Database Connection Factory is designed to be used with XQL.

Extension
An extension allows a developer to expand the Case Manager functionality by implementing an interface. The
interface defines a number of areas of functionality that can be extended.

Policy
A policy, in terms of the Instance Directory, defines how the application interacts with the Instance Directory -
specifically in getting the updated instance information, selecting the appropriate instance from available
instances, and behaviour upon failure of initialisation.

Command-line Argument
A command-line argument is a parameter that can be specified when the application is run. It is defined, in a
Console environment, by trailing the application execution command with the argument values.

Solution
A Case Manager Solution defines an implementation of the Case Manager technology to address the need of a
specific client or market segment.

Licensing Validation
The License Validation process determines the available licenses and the limitations of these licenses of the
current system (client) on the relevant technology.

SECTION 3 COMPONENTS
This section hosts descriptions of a number of important components in the Case Manager technology. The
purpose of each component, along with an overview of its use and inner workings, is described.

5

http://infohub.armadanetz.com/article.php?id=371
http://infohub.armadanetz.com/article.php?id=371


DatabaseConnectionFactory
The DatabaseConnectionFactory is a static class used to obtain a database connection from anywhere in
the application. During start-up it can be initialised, using information obtained from the Instance Directory, such
that all calls to the method GetConnection() will return a database connection to the database defined in
the instance.

Through properties one can access all the necessary connection details as well as a
ConnectionSetupDescription that can be used to display information to the user regarding the current
instance. Typically this information should be included in the title bar of an application.

The process of initialising the Database Connection Factory is simplified by the use of policies. The policy defines
the complete interaction between the Instance Directory and the application. Refer to the Instance Directory
Technical Manual for more on policies. The DatabaseConnectionFactory class can easily be initialised by
calling the Initialize() method1 that takes an Application Interactor and a policy as parameters. An
exception will be thrown if the initialisation fails.

IApplicationInteractor
An Application Interactor allows interaction between the user and the application. Different standard
implementations are available depending on the type of application:

● Console
All interaction will be done through Console messages and input.

● Windows Forms
Standard .NET Windows Forms Message Boxes are used for interaction between the user and application.

● Developer Express
Message Boxes and forms built on Developer Express technology is used.

● Windows Service
Although user interaction is not supported, communication is done through the Windows Events system.

One simply has to instantiate the appropriate standard Application Interactor in the application. The Application
Interactor also defines how an application is restarted. To support the application restart functionality (required by
some Instance Directory policies) one has to implement an Action, defining the restart process. An example of a
restart action can be found in the Restartable application example in this document.

CuminApplication
The CuminApplication is a façade that helps with initialisation of the application, specifically:

● Database Initialisation

1 In most cases the Initializemethod will not be called directly, as the process of database connection factory
initialisation is further simplified by the CuminApplication. Only make use of direct initialisation of the
DatabaseConnectionFactory if the CuminApplication is not used.

6

http://infohub.armadanetz.com/article.php?id=371
http://infohub.armadanetz.com/article.php?id=371


● Command-line Argument Processing
● Case Manager Version Validation

Basic Operation
A�er setting up all the parameters of the Cumin Application, the run() method will set up the application
as specified and pass control to the Main method. An additional method, MainOnEnd, should be
specified that will execute when the application restarts or when it terminates. An

IApplicationInteractor should also be specified in the Cumin Application that will be used to
communicate with the user.

Database Connection Initialisation
The CuminApplication façade further simplifies the entire process of Database Connection Factory
initialisation allowing the developer to focus only on the application and not the complexities surrounding
the database connection and the Instance Directory.
To initialise the Database Connection Factory for the application, simply set
DefaultDatabaseConnectionFactoryInitializePolicy to an instance of default policy for
the application. Passing the command-line arguments to the run() method of the
CuminApplication would process the arguments and allow overriding the default initialisation
behaviour.
The Main method can communicate an application restart by throwing either an
OperationCancelledException (as is thrown by CancellationToken, discussed later in this
document) or an ApplicationRestartException. To restart the application and make use of the
fail-over process as defined in the applicationʼs policy, a DatabaseFailOverRestartException

should be thrown.
As simple as that! To allow your application to behave correctly during a restart you might need to follow a
guideline or two in the Main method (which we will discuss in the Restartable application example), but
the rest is handled: database connection factory initialisation, error handling and communication, fail
over, and policy-related command-line arguments.

Command-line Argument Processing
Command-line arguments related to Database Connection Factory initialisation are parsed and processed
by the CuminApplication. The façade also allows you to extend the argument processing capabilities:
setting the ArgumentParserExtension property to your custom implementation of the
ICommandLineArgumentParserExtension interface will allow the CuminApplication to
parse and process command-line arguments specific to the application.
All arguments are assumed to be in the format -name=value or simply -name where name is the name
of the argument and value is the value it is set to. The interface requires the implementation of three
properties:

● ArgumentParser defines all the argument options and how to process them.
● ProcessArgumentAction is an action that can be programmed to do additional processing and

verification of the arguments a�er parsing. This is typically used to verify that all the required
arguments were specified by the user.

● HelpString is used to communicate help information to the user.
When unrecognised arguments are passed to the application, execution will still continue. By default a
warning message will be communicated to the user via the selected output, but can be disabled by setting
the ShouldWarnOnUnrecognisedCommandLineArguments property of CuminApplication.

7



Case Manager Version Verification
Applications are o�en written for a specific version of Case Manager to ensure that database structure is
what the application expects. The CuminApplication supports an easy way of verifying the version of
the instance as part of the Database Connection Factory initialisation process. Three modes of verification
are supported by setting the VersionVerificationType property to the appropriate value:

● Full: The full version number of the application should match the database version.
● DatabaseOnly: The application version, up to the build number, should match the respective

values of the database version. That is, the revision number is ignored.
● None: No version checks are performed.

If the version verification fails, the Database Connection Factory initialisation will also fail and trigger the
fail-over process of the policy.

Cancel
For restartable applications, CuminApplication supports a Cancel method which will set the state
of the CancellationToken passed to the Main method to Cancelled. Throughout the start-up of the
application one should call the ThrowIfCancellationRequested() method on the
CancellationToken, which will throw a OperationCanceledException if the state of the
token is Cancelled. When this exception is not handled by the Main method, the fail-over process will be
initialised. For a simple example refer to the Restartable application example in this document.

ICommandLineArgumentParserExtension
The ICommandLineArgumentParserExtension interface is used to extend the command-line argument
parsing functionality of an application. The custom implementation of the interface will be used to process the
arguments unrecognised by the standard (Database Connection Factory initialisation) argument parser. The
instance of the argument parser extension will be passed as a parameter of the Main method such that the
processed arguments can be accessed. Three properties are required by the interface:

ArgumentParser
The ArgumentParser is a collection of ArgumentOptions: pairs of argument names and processing
functions. The argument name should be unique for the application – this includes the standard
arguments as defined for Database Connection Factory initialisation. The processing function should take
the string (the value passed for the current argument) as parameter and should return an
ArgumentParseResultEnum value indicating whether the argument was successfully processed:

● Successful indicates that the argument is successfully parsed and processed.
● Failed indicates that the argument could not be parsed/processed.
● Ignored arguments were successfully parsed but were ignored. For example, when a specific

argument is not applicable.
Lambda-functions, as done in the Application-specific command-line arguments example, simplifies
setting up the parser extension tremendously.

ProcessArgumentsAction
A�er all the arguments are processed, additional processing might be required. For example, one might
have to verify that all the required arguments are specified. An Action is made available through the
interface that allows such processing. A CommandLineArgumentException should be used to
communicate validation failures and errors to the user. When the given action returns normally, successful
validation is assumed and execution of the run()-method will continue.

8



HelpString
Lastly, information should be supplied to the user regarding the available command-line arguments and
how to use them. The help string provided by the custom-implemented interface will be appended to the
standard help information when requested by the user using the –help argument.

CuminSession
The CuminSession is singleton class that gives the programmer access to the different Case Manager
components. The state of these components represent the session of the current user, including security
information, plug-ins, license information, and a range of extendible, generic Session Managers.

Singleton instance
The static property, Current, is used to access the singleton instance of the CuminSession. Upon
restart of the application (more specifically, the MainOnEnd method) it is important to reset the state of
the CuminSession such that the correct information is reloaded. To do this, one can dispose of the
singleton instance by calling the static Dispose() method. On the topic of the MainOnEnd method, it is
good practice to log the current user out (refer to UserSecurityManager) before the session is disposed.

Figure 3: Clearing the CuminSession at the end of the Main method

UserSecurityManager
The UserSecurityManager manages all user login and security information. When a log-in is done,
the current userʼs information and security tokens are loaded by this manager. By making use of the
HasAccess(string) method, the programmer can verify that the current user has the appropriate
access rights. Information on the user (and the userʼs workgroup) can be accessed through the User

property. Refer to the CuminSessionSetupDescription for options on the log-in process.

WorkgroupManager
Case Manager Workgroups form hierarchies by each specifying a parent workgroup. These tree structures
are difficult to build directly from database queries. The WorkgroupManager, thus, provides
hierarchical information on Workgroups, such as:

● Whether a workgroup is within a specified branch

9



● All administrative workgroups
● All usersʼ workgroups within a branch
● All team workgroups
● The complete root path (ancestry) of a workgroup

PluginManager
Case Manager operates on an extension framework. Database Known Types, Daily Maintenance Processes,
Dashboards, additional Session Managers, Data Mergers, Work Item Actions, and Setting Controls are
defined by an extension. Some extensions are not dynamically loaded and define base components
required by the application. We refer to these as static plugin definitions. Static plugins are loaded by
explicit commands (the method RegisterStaticPlugin) in the source code, whereas the
CuminSession can load all the dynamic extensions, if required by the application. The
PluginManager is used to access all the loaded plugin definitions (static as well as dynamic
extensions). Note that all the components of the extension will be registered to the relevant Case Manager
functionality automatically (e.g. Database Known Types will be registered to the
DatabaseConnectionFactory automatically). It is therefore uncommon for an extension or
application to access the loaded plugins directly. Extension-specific information would rather be
encapsulated in a Session Manager defined in the extension.

SolutionManager
The SolutionManager is loaded before login and provides information on the solution implemented in
Case Manager. The license may enforce a specific solution to be implemented, based on the license
verification type (specified in the CuminSessionSetupDescription). The Solution information defines the
branded form background images (the login form, about form and the start-up splash screen), the
branding colour, the version of the solution, and limitations of the solution.

LicensingManager
The Case Manager License can be verified using the LicensingManager. Based on the verification
mode, the license information will be updated from the Case Manager Licensing Service and verified for
validity. A license may also require a specific solution to be implemented on the system. The verification
process also includes the renewal process of licenses which requires an internet connection and user
interaction.

SystemInformation
The SystemInformation provides the Client System ID (also referred to as the SGUID) and the client
name. This is the same information as provided by the VoyagerSettings Session Manager, but is
always loaded at the beginning of setup (whether or not the VoyagerSettings Session Manager is
included in the setup).

SessionManagers
All Session Managers, whether from static plugin definitions or from dynamic extensions, are loaded in the
CuminSession. The programmer can easily access the appropriate Session Manager by making use of
the generic method, Manager<T>(). Session Managers are unique in type – that is, only one Session
Manager of a type may be registered. Access, using the Manager method, is done by requesting the
appropriate Session Manager type. For example, if I need access to the VoyagerSettings Session
Manager, the following method call will result in the registered object of type VoyagerSettings:

Figure 4: Accessing Session Managers in CuminSession

10



No typecasting is necessary as the object is returned in the type requested. Especially working with
dynamic extensions, the programmer o�en needs to first verify that the Session Manager is loaded. The
IsManagerRegistered<T>() method may be used for this. The
CuminSessionSetupDescription defines the standard Session Manager to load – that is, Session
Managers defined in the base Case Manager code. Session Managers defined in dynamic extensions (as
specified in the plugin definition) will automatically be loaded in the CuminSession upon setup.
Since Session Managers are usually defined in external code, it provides an easy mechanism for extensions
to maintain their static session information in the CuminSession. The Manager<T>() method is o�en
used to access different Case Manager components and dynamic extension information.

CuminSessionSetupDescription
Case Manager provides an easy façade to set up the Cumin Session. All the information required for setup is

specified in a CuminSessionSetupDescription object and passed to the Setup method of the
CuminSession at start-up of the application. The following properties should be set:

ApplicationInteractor
The ApplicationInteractor is specified as a parameter to the constructor of the
CuminSessionSetupDescription and is used for all interaction between the user and the
application during setup.

SetupFailureMode
Two modes are supported to handle failure during the setup of the CuminSession:

● Exceptions: An exception is thrown (the default behaviour).
● ApplicationInteractor: An error message is communicated via the Application Interactor and

false is returned by the Setup method.

ShouldLoadDynamicExtensions
This Boolean property indicates whether dynamic extensions should be loaded by the application. When
extensions are not required by the application, this value should be false (the default value) for the
purpose of performance and stability.

ShouldLoadWorkgroupManager
When hierarchical workgroup information is required by the application and the WorkgroupManager is
used, the ShouldLoadWorkgroupManager property should be set to true. By default the
WorkgroupManager would not be loaded.

LicenseApplicationId
The application should be identified for license verification. The GUID specified in this property should be
the same as that of the appropriate license in the Case Manager Licensing Service. This property is required
if any form of License verification is done (see LicenseValidateMode).

LicenseValidateMode
License validation can be done during setup of the CuminSession. There are four modes that can be
specified:

● None: No license information will be loaded into the Licensing Manager and no verification will be
done. This is the default mode.

● LoadApplicationLicenseOnly: The application license information is loaded from the database
(not from the Licensing Service) but no validation is done.

● ValidateApplicationLicense: The application license information is loaded from the database and
validated. The process includes the renewal process that will run upon expiry and when the expiry

11



date is within a warning period. Administrators will be notified if expiry is within the next week and
all users will be notified if expiry is within the next day.

● ValidateApplicationAndSolutionAsExternalIdentifier: If the application specifies a solution
identifier (GUID) as external identifier, this mode can be used to verify that the correct solution is
implemented in the system. If the license specifies no external identifier, any solution will be seen
as valid. The solution is validated a�er the normal license validation process.

UserLoginMode
The programmer can specify that a login is required by the application. The Application Interactor already
caters for login interaction with the user. The user will be prompted to log in, simply by specifying the
appropriate login mode:

● Standard: The user is prompted with a login screen where the user and password should be
specified. This is the default mode.

● PasswordForPreSpecifiedUser: The programmer may specify the user that is to be used by the
application (that is, the user does not have the option of another user). The userʼs password is still
required.

● PreSpecifiedUser: The programmer specifies the user to be used by the application. No password
is required from the user.

SpecificLoginUserId
The programmer should specify the user to be used by the application in the cases where
UserLoginMode is set to PasswordForPreSpecifiedUser and PreSpecifiedUser. This is
done by specifying the User ID (or USERGUID).

SessionManagerTypes
Session Managers are not added to the CuminSessionSetupDescription by using properties.
SessionManagerSetupDescription object should be added using the
AddSessionManagerSetupDescription or
AddSessionManagerSetupDescriptionRange method. The
SessionManagerSetupDescription class provides static methods to easily create the objects from
Session Manager types. For example, creating a SessionManagerSetupDescription for
VoyagerSettings is done using the following statement:

Figure 5: Creating a Session Manager object from type

The New method is overloaded to support specifying the Session Manager concrete type but mapped to an
implemented interface type, and also specifying the actual instantiated Session Manager object.
Only the Session Managers from the standard Case Manager components should be specified. All the
Session Managers from the dynamic extensions will be loaded automatically if the
ShouldLoadDynamicExtensions is true.

ProgressObservers
Progress Observers (implements the interface IProgressObserver) can be added to the
CuminSessionSetupDescription (through the method AddProgressObserver) to communicate setup
progress. The Splash screen used by Case Manager is an example of observing the setup progress.

BaseCuminPlugin
The fundamental components as defined in the static BaseCuminPlugin are:

12



● All the Case Manager object known types
● The Base Daily Maintenance Process
● The “Execute Instructions” Daily Maintenance Process
● The activity, status and timing dashboards (both Wall Dashboards and Windows Dashboards)
● The Tag Merger (used with short message merging) for all the standard Case Manager objects related to a

case.
● Initialisation of

o The Legacy User Security Settings
o The Custom (and Case Extra) Field Names
o The SMS Service Client
o The Print Manager

It is therefore important to load the plugin definition statically at the start of the program - before the
CuminSession is set up:

Figure 6: Registering the Base Cumin Plugin

ICancellable
The ICancellable interface provides a mechanism to cancel processes (especially forms) through an external
call. This can be used to implement a restart function (in the Application Interactor) for an application that makes
use of forms. Refer to the Restartable application for an example of the use of the interface.

Case Manager Components

WorkItemMediator
The WorkItemMediator handles all communication when work items (cases) are opened, closed, gain
focus or change state. Colleagues to the WorkItemMediator are notified when any of these actions
occur, to which they may respond appropriately. An example of this is the Case Manager Front End
(through the CuminDisplayManager) and the Timer. In general when dealing with instructions and
activities, the WorkItemMediator becomes necessary.

VoyagerSettings
The VoyagerSettings stores the basic settings of Case Manager. This includes many of the financial
and system-wide settings. In order to access these settings, one has to specify the VoyagerSettings as
a Session Manager. Requesting the manager through the CuminSettings will give the programmer
access to all the settings as stored for the system.

ThemeSkinManager
Case Manager provides a very easy mechanism of using the form skins – standard skins as well as the
themed skins – in a custom application. When the ThemeSkinManager is added to a CuminSession,
all Developer Express forms will use the appropriate skin. The themed skins can be deactivated by setting
the IsThemesEnabled property to false. The only further interaction with this Session Manager is
when a form is created in another thread (which will not, by default, take on the original skin). The
following call in the new thread will resolve the problem:

13



Figure 7: Applying themed skins in another thread

LicenseSessionManager
When a license stipulates a specific amount of available licenses, it can be enforced by an application
through the LicenseSessionManager. The license specified as the Application License (see
LicenseApplicationId) will be used. A check-out is performed: an entry for the user on the specific
workstation will be logged for this application license. If the amount of checked out licenses exceeds the
amount specified by the license, the application will not initialise and an appropriate message will be
displayed to the user. To simplify, by adding the LicenseSessionManager to your application (given
that the amount of licenses is specifically for your application), the amount of users will be enforced.

ElectronicDiary
The ElectronicDiary provides information on work items assigned to users and workgroups. Only
when this information is required should this Session Manager be added to the application as there is a
rather severe implication on the setup speed.

FeedbackReportClient
A web service is available for communication of errors and user feedback from Case Manager so�ware. If
you choose to include this functionality in your application, simply add the FeedbackReportClient
Session Manager to your application and make use of the SendFeedback method.

SECTION 4 EXAMPLE PROGRAMS

Simple Instance Directory integrated application
This simple example shows the general structure of using the CuminApplication. The program entry point -
Main(string[]) - sets up and runs the CuminApplication set to call another Main method (taking an
ICommandLineArgumentParserExtension and a CancellationToken as arguments) with an already
set up DatabaseConnectionFactory.

Application-specific command-line arguments
Letʼs create a simple application that takes the following arguments:

● FilterType: either “LastName” or “MinBalance”
● LastName: the last name to be used in the filter
● Balance: the minimum balance applied as a filter

14



When the filter type is specified to be LastName, the LastName argument must be set. Similarly, when
MinBalance is specified, the Balance argument should be set. A filter must be specified.
We will work from the Simple Instance Directory integrated application example.

Create a new Command-line argument parser extension:

15



Figure 9: Creating an argument parser extension

Changes to the CuminApplication
The CuminApplication will process your applicationʼs command-line arguments appropriately when
the ArgumentParserExtension property is set to an instance of your applicationʼs custom argument
parser extension. The arguments passed to the Main method should, of course, be passed to the Run
method.

Figure 10: Registering an argument parser extension

Using parsed arguments in Main method
The instance of your applicationʼs argument parser extension – with the arguments parsed – will be passed
as an argument to the Main method. Thus, simply by casting the object to the appropriate type, you will
be able to access the parsed arguments.

Figure 11: Access custom parsed arguments in the Main method

Application with Login
The CuminSession is used for user login. The base plugin is registered, and the CuminSession is initialised
with the login mode appropriately set. The following example reflects the necessary changes to the Simple
Instance Directory integrated application:

16



Figure 12: Application with Login

17



Restartable application
Restartable policies are only supported in applications that specify an Application Interactor with a restart
function. The restart function should cancel the CuminApplication and request cancellation on all forms
(through the ICancellable interface). Furthermore, the CuminSession should be reset which can be done
by logging out the user and disposing the Singleton instance. Letʼs look at each of the areas affected:

Forms
Main forms should be made cancellable though the ICancellable interface. This will allow the form to
be closed via an external call. Since the call is generally made by a separate thread, we need to cater for
Cross-threading.

Figure 13: Implementing cancellable forms

Application Interactor
For simplicity, let us implement a private helper method to create an Application Interactor to be used by
the application. This method should be used to set the ApplicationInteractor property of the
CuminApplication. For this example, we will use the standard Application Interactor for the
Developer Express forms; standard Application Interactors are available for Windows Forms, Console
Applications and Windows Services as well.
When forms (or other cancellable items are used in the application we need to maintain a list of these
items.

Figure 14: Restartable Application Interactor

CuminApplication
The CuminSession should be reset when a restart is requested. We can specify this as part of the
MainOnEnd method (that is, when the CuminSession is used in the application):

18



Changes to Main
In our Main method, we should make regular calls during start-up to check the state of the cancellation
token which will throw an OperationCanceledException when cancelled. We should not handle
the OperationCanceledException, DatabaseFailOverRestartException and the
ApplicationRestartException in the Main method to ensure the fail-over process initiates
correctly.

Cancellable items, typically forms, are added to a static list such that the restart function has access to
cancel the item when necessary. The item should also be removed from the list when closed (cancelled)
normally.

In this example program, general exceptions are handled when compiled in Release mode only. In Debug
mode, exceptions are communicated in Visual Studio much better when unhandled.

Figure 15: Restartable Main method

License Validated Application
To validate an applicationʼs license, simply set the LicenseValidateMode and specify the licenseʼs
application identifier as defined on the Case Manager Licensing Service.

Figure 16: Validating an applicationʼs license

19



Application making use of extensions
To make use of extensions in your applications, simply set the ShouldLoadDynamicExtensions property to
true. Session Managers specified in the extension definition will be loaded automatically. You should not specify
it directly.

Figure 17: Loading Dynamic Extensions

Application making use of additional session managers
When adding standard Session Managers to the setup description, make use of the generic method, New. The
method is overloaded to take the Session Manager type (if a default constructor exists), a base and a concrete
Session Manager type, and a base type along with an actual Session Manager object. The last is specifically used
when a non-default constructor should be used.

Figure 18: Adding Session Managers to the CuminSession

SECTION 5 LIBRARIES

VoyagerNetz.Instance
VoyagerNetz.Instance contains all the interaction, policies, and behaviour of the Instance Directory. This
library contains the DatabaseConnectionFactory, the definition of the ApplicationInteractor, and
the ICancellable interface.

VoyagerNetz.InstanceDirectory
For communication with the remote Instance Directory, common objects are defined in the
VoyagerNetz.InstanceDirectory library.

Application Interactors
A few standard implementations of the Application Interactor are available.

VoyagerNetz.Instance.DevEx
The standard Application Interactor for Developer Express applications.

VoyagerNetz.Instance.WinForms
The standard Application Interactor for .NET Windows Forms applications.

VoyagerNetz.Instance.Console
The standard Application Interactor for Console applications.

20



VoyagerNetz.Instance.WinService
The standard Application Interactor for Windows Services.

Microworks.Data
The fundamental library for XQL.

Micwoworks.Data.FirebirdClient
The Firebird implementation of the XQL library.

Microworks.Voyager.Cumin.Common
This library contains all the common Cumin types.

Microworks.Voyager.Cumin.Voyager
All the Case Manager database/Cumin objects are defined in the Microworks.Voyager.Cumin.Voyager
library.

VoyagerNetz.BaseComponents
The BaseComponents library contains the CuminApplication and the CuminSession. The standard
managers of the CuminSession - the Plugin Manager, Solution Manager, License Manager, and Version Manager
– are also defined in this library. BaseComponents also defines the Tag Data Merger, used to merge Short
Message Templates.

VoyagerNetz.Components.Work
The functionality related to instructions, action buttons and workflow is defined in the
VoyagerNetz.Components.Work library.

VoyagerNetz.Licensing.Common
The licensing renewal process includes a file-based sub-process of which the necessary common objects are
defined in the VoyagerNetz.Licensing.Common library.

21


